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Understanding macromolecular function often relies on the

comparison of different structural models of a molecule. In

such a comparative analysis, the identi®cation of the part of

the molecule that is conformationally invariant with respect to

a set of conformers is a critical step, as the corresponding

subset of atoms constitutes the reference for subsequent

analysis for example by least-squares superposition. A method

is presented that categorizes atoms in a molecule as either

conformationally invariant or ¯exible by automatic analysis of

an ensemble of conformers (e.g. crystal structures from

different crystal forms or molecules related by non-crystallo-

graphic symmetry). Different levels of coordinate precision,

both for different models and for individual atoms, are taken

explicitly into account via a modi®ed form of Cruickshank's

DPI [Cruickshank (1999), Acta Cryst. D55, 583±601] and are

propagated into error-scaled difference distance matrices

[Schneider (2000), Acta Cryst. D56, 715±721]. All pairwise

error-scaled difference distance matrices are then analysed

simultaneously using a genetic algorithm. The algorithm has

been tested on several well known examples and has been

found to converge rapidly to reasonable results using a

standard set of parameters. In addition to the description of

the algorithm, a criterion is suggested for testing the identity

of two three-dimensional models within experimental error

without any explicit superposition.
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1. Introduction

Although a single crystal structure normally represents a

rather static picture of a protein molecule, the comparison of

different conformers of a given molecule as obtained from

different structure determinations can provide valuable

insight into its ¯exibility. Such analyses can be based on

structures in different crystal forms, under different physico-

chemical conditions (using, for example, pH or temperature as

a variable) and with and without a substrate molecule bound.

Multiple copies of a molecule may also arise from non-

crystallographic symmetry or be an ensemble generated by

NMR structure analysis. A typical strategy is to ®rst identify

the rigid part of the molecule and then in a subsequent step

interpret the conformational differences revealed by least-

squares superposition of the corresponding atoms in the rigid

part. There are, however, several problems with this approach.

Firstly, the identi®cation of the rigid or conformationally

invariant part of the molecule, here de®ned as the largest

subset of atoms for which all interatomic distances are iden-

tical across all models under consideration, is often performed

manually and in an iterative fashion and is thus susceptible to

preconceived ideas. Secondly, in most cases, the potentially
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very different levels of quality of different models and of the

precision of atomic coordinates for different atoms in the same

model are not taken into account in the comparison process. A

third, more technical, complication is that usually the different

models are compared in a pairwise fashion, resulting in

massive book-keeping problems if many models are

compared. Recently, an approach to identify the conforma-

tionally invariant part of a molecule with respect to a set of

several conformers by manual interpretation of error-scaled

difference distance matrices has been proposed (Schneider,

2000). In principle, this approach can be used to identify the

conformationally invariant part of a molecule with respect to

any number of conformers; in practice, however, the number

and the complexity of the matrices to be interpreted soon

become the limiting factor. In the present paper, a computer

algorithm that automizes this task is described.

The question of how to extract information about the

rigidity and ¯exibility of proteins based on the comparison of

two conformers has already been addressed by several

authors. The DYNDOM approach developed by Berendsen &

Hayward (1998) employs a cluster analysis of interatomic

vectors to ®rst subdivide a molecule into domains and then

determines hinge axes between these domains. Lesk has

described the sieve ®tting procedure (Lesk & Chothia, 1984;

McPhalen, Vincent & Jansonius, 1992), where the dominant

rigid domain of a molecule is found by iterative application of

least-squares ®ts in which after starting from a full super-

position in every step poorly matching residues are eliminated.

This method has been expanded to the partitioning of a

molecule into multiple small domains of preserved geometry

in the adaptive selection procedure suggested by Wriggers &

Schulten (1997). Here, variable seed sets of atoms are

subjected to sieve ®tting in order to develop a set of well ®tting

substructures. Nichols et al. (1995) have recently formulated

two algorithms that ®nd rigid domains by analysing the

thresholded difference distance matrix corresponding to two

conformers and applied this technique to identify rigid regions

in haemoglobin based on the comparison of the respective

deoxy and oxy structures (Nichols et al., 1997).

A generalization of the sieve ®tting procedure to the case of

multiple prealigned models of different but homologous

proteins has been put forward by Gerstein & Altman (1995)

and has subsequently been used to create a library of protein

family core structures (Schmidt et al., 1997).

Multiple models of the same molecule also appear in

ensembles of conformers derived from an NMR experiment.

Kelley and coworkers have recently designed an algorithm for

the analysis of such ensembles that ®nds the core of a molecule

by identifying dihedral angles showing small variation across

the ensemble. However, as in their de®nition of the core the

parts of the molecule containing stable dihedral angles do not

need to be continously connected, such a core can contain

rigid regions that move relative to one another. Kelley and

coworkers deal with such situations by further subdividing the

core into local structural domains by analysis of a matrix

containing the variance of C�ÐC� distances. This matrix

effectively summarizes the information present in the differ-

ence distance matrices between all possible pairs of confor-

mers and can be rapidly interpreted using a clustering

algorithm (Kelley et al., 1996, 1997).

In the context of error-scaled difference distance matrices,

®nding the largest conformationally invariant part of a mole-

cule with respect to a set of conformers (as opposed to only

two conformers) can be formulated as an optimization

problem of identifying the largest subset of atoms for which all

interatomic distances are identical within error in all models

(corresponding to all relevant elements of the error-scaled

difference distance matrices being approximately zero). As for

a molecule with N atoms the number of possibilities for

creating such a subset is 2N (every atom can be a member of

the subset or not), a systematic full search of all possibilities is

clearly not feasible. Furthermore, the fact that the search

parameters assume discrete values prohibits an analytical

solution of the problem. The nature of the problem, however,

is such that local partial solutions (i.e. small groups of

conformationally invariant atoms) can be identi®ed and their

combination may yield a better solution (i.e. if two rigid

groups do not move relative to one another, their combination

will result in a larger rigid group), making a genetic algorithm

(GA; Holland, 1975; Goldberg, 1989; Mitchell, 1996) the

optimization method of choice. In addition, GAs are also

particularly well suited to large search spaces with discrete

parameters.

The basic idea of a genetic algorithm is that a population of

candidate solutions, or hypotheses, is created and then

subjected to an evolutionary process. During the evolution,

offspring candidate solutions are generated by combining

properties of existing candidate solutions whereby the prob-

ability of properties being passed on to the next generation is

proportional to a measure of ®tness. After a number of

generations, the evolutionary search should converge to a

homogeneous population with high values of the ®tness

function for all members of the population. Although there is

no guarantee that the global optimum is found, the top-scoring

hypothesis of the ®nal population in many cases represents an

acceptable solution to the optimization problem.

A number of problems in structural biology have been

tackled using GAs in recent years [e.g. protein form recon-

struction from X-ray solution scattering (ChacoÂ n et al., 2000)

and docking of small molecules to macromolecules (Jones et

al., 1997)] and several applications in macromolecular crys-

tallography have been reported [e.g. ®nding heavy-atom sites

from Patterson maps (Chang & Lewis, 1994), molecular

replacement (Chang & Lewis, 1997; Kissinger et al., 1999) and

low-resolution phasing (Webster & Hilgenfeld, 2001)].

The implementation of the search for the largest confor-

mationally invariant part of a molecule as a GA is relatively

straightforward. A candidate solution can be conveniently

described as a binary string where every bit indicates whether

or not the corresponding atom belongs to the conformation-

ally invariant part or not. The ®tness of a candidate solution is

evaluated by checking its consistency with all error-scaled

difference distance matrices that can be constructed between

all conformers being analysed. The main dif®culty in manual



interpretation, the combination of small conformationally

invariant regions, where all atoms are close in sequence, to

larger parts connected in three dimensions [while keeping

track of a large number of error-scaled difference distance

(EDD) matrices], is overcome by the genetic algorithm which,

in fact, is centred exactly around the ®ltering of improved

candidate solutions from a large pool of randomly recombined

potential partial solutions.

In the following, the algorithm is described and its appli-

cation to several test cases, for which a careful more manual

analysis was available in the literature, is discussed. The

examples are (i) comparison of three NCS-related copies of

chorismate mutase re®ned to near atomic resolution, (ii)

comparison of two NCS-related copies of an Fab fragment,

(iii) determination of the large and small domain of aspartate

aminotransferase based on ®ve structures representing

different ligation states in four different crystal forms, (iv)

derivation of the common core of seven different structures of

pig pancreatic �-amylase in four different crystal forms and (v)

derivation of rigid and ¯exible parts of the enzyme epimerase

based on ten conformers related by non-crystallographic

symmetry.

In all examples, the method is used for comparing C� atoms

only. It should be noted that the method is applicable to any

set of atoms, such as, for example, atoms surrounding the

active site of an enzyme.

2. Methods

2.1. Formulation of the optimzation problem

The standard difference distance matrix contains elements

�ab
ij corresponding to the difference in distance between two

atoms i and j in two conformersMa andMb,

�ab
ij � da

ij ÿ db
ij: �1�

If estimates ���ab
ij � for the uncertainty of the matrix element

�ab
ij are available, the corresponding error-scaled difference

distance with elements Eab
ij can be calculated (Schneider,

2000),

Eab
ij � �ab

ij =���ab
ij �: �2�

A rough approximation for ���ab
ij � has been suggested in

Schneider (2000) based on the coordinate uncertainty of

atoms i and j in modelsMa andMb, �a
x;i, �

a
x;j, �

b
x;i and �b

x;j,

���ab
ij � � ��a

x;i�2 � ��a
x;j�2 � ��b

x;i�2 � ��b
x;i�2

� �1=2
: �3�

Values for atomic coordinate uncertainties �a
r;i can be calcu-

lated rigorously via the inversion of the normal matrix of the

re®nement (Sheldrick & Schneider, 1997) or estimated using a

modi®ed version of Cruickshank's Diffraction Precision

Indicator, DPI (Cruickshank, 1999; Schneider, 2000).

According to Cruickshank, the coordinate error of an atom

with a mean B value Bavg, �(x, Bavg), can be estimated based

on the number of fully occupied sites Ni, the number of unique

re¯ections nobs, the completeness of the data C, the free R

value Rfree and the maximum resolution of the data dmin

(equation 27 in Cruickshank, 1999),

DPIf � �f �x;Bavg� � �Ni=nobs�1=2Cÿ1=3Rfreedmin: �4�
In cases where Rfree is not known and the number of para-

meters npar is smaller than the number of observables nobs,

equation (26) from Cruickshank (1999),

DPIa � �a�x;Bavg� � �Ni=p�1=2
Cÿ1=3Rdmin; �5�

where p = (nobs ÿ npar) and R equals the crystallographic R

value, can be used to derive an estimated error. In a ®rst

approximation, assuming that coordinate uncertainties and B

values are linearly related, the coordinate uncertainty for an

individual atom with a B value of Bi can be estimated as

~�af ;i �
DPIaf

Bavg

Bi; �6�

depending on whether DPIa or DPIf has been evaluated. To

avoid extremely low errors for atoms with extremely low B

values (that may well correspond to re®nement artefacts), B

values smaller than a certain value Blow can be scaled up to

Blow. In the computer program implementing the algorithm,

the default value of Blow is set to Bavg ÿ 2�B, where �B is the

standard deviation of Bavg.

The goal of ®nding the conformationally invariant part of a

molecule with respect to a set of n structural models

M = {M1 . . . Mn} is equivalent to identifying a subset of the

set of all atoms A = {a1 . . . anatom
} for which for all pairs of

atoms ij the interatomic distance are identical in all models.

Allowing for distances being imprecise owing to experimental

errors, this condition can be relaxed to the condition that the

difference in distances should not be signi®cantly different from

zero; in other words, for all pairs of models ab and all pairs of

atoms ij belonging to the conformationally invariant subset,

the respective elements of the error-scaled difference distance

matrices Eab
ij should be smaller than a tolerance level "l.

2.2. Implementation as a genetic algorithm

2.2.1. Encoding, fitness function and population. A candi-

date solution, or hypothesis, H about a subset of atoms being

conformationally invariant can be conveniently encoded as a

string H of length natom over the binary alphabet {0, 1},

H � fh1 . . . hnatom
g �7�

where the value or status of a bit hi depends on whether or not

(0 or 1) an atom i is considered to be a member of the

conformationally invariant subset.

Based on the error-scaled distance differences, Eab
ij , the

®tness of an hypothesis can be measured using the following

®tness function SH,

SH �
1

nabn2
atom"l

P
ab

P
ij

"l ÿ jEab
ij j for jEab

ij j < "l

p�min�jEab
ij j; "h� for jEab

ij j � "l

�
:

�8�
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This score is a weighted count over all relevant elements of all

error-scaled difference matrices (the outer sum running over

all possible pairs ab of models Ma and Mb, the inner sum

running over all elements ij of the respective EDD matrices

that should be zero according to the hypothesis H). For every

matrix element that is consistent with the hypothesis, i.e.

jEab
ij j < "l, the score is increased by a term ("l ÿ Eab

ij ). For

matrix elements not consistent with the hypothesis, i.e.

jEab
ij j � "l, the score is reduced by the size of the respective

element scaled by a penalty factor p. The choice of the penalty

factor (typically between 5 and 20) allows one to adjust the

fraction of non-zero matrix elements allowed for an accep-

table solution. The matrix elements entering the penalty term

are limited to a maximum of "h in order to avoid instabilities in

the evolutionary search caused by inclusion of single well

de®ned atoms with extremely large conformational differ-

ences. Without this mechanism, inclusion of a single such atom

into a hypothesis would have an extreme effect on the score,

possibly rendering an otherwise well performing candidate

solution useless. The normalization factor 1/(nabn2
atom"l) is

chosen such that for the case where the entire molecule is rigid

and all elements of all error-scaled difference matrices are

zero, a score of 1.0 is obtained.

Throughout the evolutionary search, a population of nhyp

hypotheses (where a typical value of nhyp is 20) Hk is main-

tained.

2.2.2. Genetic operators. To modify the population, the

following genetic operators are used.

(i) Grow/Shrink. Moving from left to right, each bit of an

H-string is inverted if it corresponds to the beginning or end of

a stretch of atoms continous in sequence marked as confor-

mationally invariant. The corresponding bit is kept inverted

only if it results in an increased ®tness. This operation is

repeated iteratively until no further improvement of the score

is achieved.

(ii) Recombination. Two hypotheses are taken, subdivided

into ten non-overlapping regions (genes) of equal length and

an offspring is constructed by recombining genes taken

randomly from the two parent hypotheses.

(iii) Mutation. The status of a randomly chosen atom is

inverted. The mutation is only kept if it leads to an improve-

ment in the score SH. In principle, in an evolutionary process

mutations that lead to a temporary deterioration of the score

may be bene®cial in the long run, but experience has shown

that for the present purpose permitting disadvantageous

mutations can sometimes render the optimization process

unstable (see x3.1). Permitting only advantageous mutations

also speeds up convergence. A typical mutation rate is 5%.

2.2.3. The starting population. A starting population of nhyp

hypotheses is created by marking continous overlapping

stretches of length 1.2 � natom/nhyp atoms as conformationally

invariant. The Grow/Shrink operator is then applied to all

hypotheses of the starting population and the central loop of

the evolutionary algorithm implementing selection and

reproduction is entered.

2.2.4. Evolution. A new generation is created from an

existing population, modi®ed and evaluated in six steps.

(i) Selection. After sorting the hypotheses with respect to

their score, the low-scoring 30% of the hypotheses are

destroyed and only the top-scoring 70% of the hypotheses are

kept for subsequent reproduction.

(ii) Recombination including crossover. The now empty

30% of the slots are replenished by random recombination

from the surviving hypotheses using the Recombination

operator. To assign a higher mating probability for high-

scoring individuals, each parent is selected by taking the

highest scoring hypotheses of two successive random draws

from the survivors of the previous generation.

(iii) Scoring. All nhyp hypotheses are scored.

(iv) Mutation. All hypotheses undergo random mutagenesis

where only mutations improving the ®tness are kept (see

Mutation operator above).

(v) Grow/Shrink. All members of the population develop

using the Grow/Shrink operator.

(vi) Convergence check. Several criteria to stop the opti-

mization process are evaluated. If no convergence criterion is

ful®lled, the next generation is started from (i) (Selection).

2.2.5. Convergence. In most cases, the optimization will be

terminated when the population is becoming homogeneous,

i.e. most hypotheses are similar. Although identical scores are

not necessarily equivalent to identical hypotheses for the

general case, in the case of the present algorithm the homo-

geneity of a population can be measured as the standard

deviation of its scores. If this standard deviation is smaller than

a user-de®ned percentage pstd (by default, pstd = 1.0%) of the

mean score, further cycles are not likely to add any new

information to the top-scoring hypothesis and the iteration is

stopped.

To avoid the optimization becoming trapped in an oscil-

lating situation, particularly in cases where very noisy matrices

are analysed, the course of the top score is monitored. If the

top score does not change for more than a number of

generations (typically ten), the search is stopped.

Finally, if the number of generations reaches a user-de®ned

limit (e.g. 50 generations), the search is interrupted.

2.2.6. Constraints. Acceptable solutions are not only char-

acterized by a high score, but also should ful®l certain addi-

tional conditions to be physically reasonable. Two such

conditions can be formulated: (i) conformationally invariant

atoms should appear in consecutive stretches of a certain

minimum length slmin and (ii) continous stretches of confor-

mationally invariant atoms should not be interrupted by

single-atom outliers.

As the overall performance of the algorithm largely

depends on the speed of the scoring, no constraints that would

complicate the evaluation of the ®tness function were imple-

mented in the evolutionary search itself. Constraints are only

imposed after the search has ®nished by modi®cation of the

top-scoring hypothesis: stretches shorter then slmin atoms are

marked as ¯exible and the status of single ¯exible atoms in

otherwise sequence-continous stretches of conformationally

invariant atoms are inverted. These constraints are of course

only valid if the order of the atoms analysed has a physical

meaning, as for example is normally the case for C� atoms,



which belong to successive amino-acid residues in a poly-

peptide chain; for cases where the sequence of atoms analysed

is not related to their arrangement in three dimensions, these

constraints should not be applied.

2.3. Identification of identical models

An important question that can be answered in terms of

error-scaled difference is whether two models as a whole can

be considered identical or not. Again, in principle, for two

identical models all elements of the EDD matrix should be

zero. In reality, this condition can be relaxed twofold to allow

for experimental uncertainties: (i) elements whose modulus is

smaller than a threshold "l are considered to be zero within

error and (ii) a certain percentage of elements of the EDD

matrix is allowed to have values larger than "l.

If we consider two models consisting of N atoms each,

where M of the N atoms are in signi®cantly different positions,

the number of zero-elements n0 in the corresponding EDD

matrix should still be larger than

n0 � �N ÿM�2 � N2 ÿ 2MN �M2 �9�
[where (NÿM)2 is the number of elements in the block of the

matrix that corresponds to the conformationally invariant part

of the model], or, expressed as a percentage of zero elements

with respect to all elements,

p0 �
N2 ÿ 2MN �M2

N2
� 1ÿ 2

M

N
� M

N

� �2

: �10�

If we now replace M/N by the percentage of atoms that are

signi®cantly different, pd = M/N, we obtain the following

equation for the corresponding percentage of EDD-matrix

elements that should still be zero if a percentage pd of atoms is

in different conformations in the two conformers being

compared,

p0;pd
� 1ÿ 2pd � p2

d: �11�
If we allow 1% of the atoms to be in different relative posi-

tions (i.e. pd = 0.01), we obtain

p0;1% � 1ÿ �2� 0:01� � 0:012 � 0:9801: �12�

2.4. Computers and other programs used

All calculations were performed on a PC with a Pentium III

processor running at 800 MHz under Linux Kernel Version

2.2.16. All least-squares superpositions were performed using

LSQKAB (Collaborative Computational Project, Number 4,

1994; Kabsch, 1976). Schematic ®gures of protein molecules

were prepared using MOLSCRIPT (Kraulis, 1991) and

Raster3D (Merritt & Murphy, 1994).

3. Examples

3.1. Chorismate mutase

The structure of the functional unit of chorismate mutase

from Bacillus subtilis, a homotrimer, has recently been

determined to a resolution of 1.3 AÊ (Ladner et al., 2000). The

crystals used belonged to space group P212121 (unit-cell

parameters a = 52.2, b = 83.8, c = 86.0 AÊ ) with three

crystallographically independent monomers in the asymmetric

unit. Out of the 127 residues in a monomer, the ®rst 116

residues form a compact structure of �-strands and helices; the

C-terminal residues 117±127 are found in different confor-

mations in each of the three monomers (Fig. 2).

DPI values were calculated based both on R and Rfree

(Table 1) and the resulting Rfree-based value was found to be

somewhat higher than the value obtained using R. As DPIf is

more robust with respect to over®tting (which in fact could be

the case to a small extent for a full anisotropic model with data

extending to 1.3 AÊ ) than DPIa, all subsequent calculations are

based on the DPIf.

For the three molecules, three error-scaled C�C� difference

distance matrices with 8001 independent elements each were

calculated and analysed. The uncertainties for the differences

in C�C� distances ���ab
ij � (3) ranged from 0.048 AÊ for atom

pairs with low B factors to 0.285 AÊ for atom pairs with high B

factors, with a mean value of 0.097 AÊ . The corresponding

error-scaled difference distance matrix cut at a lower limit of "l

of 5� (Fig. 1a) very clearly shows that the major difference

between the molecules A and B is the conformation of about

ten residues at the C-terminus. Beside this, the second half of

the ®rst helix (residues 28±33) and a short loop preceding the

C-terminus (residues 101±104) are marked as having different

conformations relative to the major part of the protein.
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Table 1
Data used for the calculation of Cruickshank's DPI for the structures
investigated in this paper.

Values for the number of fully occupied site Ni, the number of observables
nobs, the completeness of the diffraction data cpl., the crystallographic R value
for all data R, the free R value Rfree and the maximum resolution dmin were
taken from the headers of the respective PDB ®les unless otherwise indicated.
npar was calculated as 4 � Ni (assuming re®nement of three coordinates and
one B value per atomic site) for all structures except 1dbf. DPIf and DPIa were
calculated using (4) and (5), respectively.

PDB
code Ni npar nobs

cpl.
(%) R (%)

Rfree

(%)
dmin

(AÊ )
DPIa

(AÊ )
DPIf

(AÊ )

1dbf² 3658 32922 89868 92.0 16.9 23.5 1.3 0.057 0.063

8fab 7073 28292 64477 75.0 17.3 n/a 1.8 0.15 n/a

7aat 6992 27968 60850 96.1 16.6 n/a 1.9 0.15 n/a
1tar³ 6352 25408 36893 88.5 19.4 n/a 2.2 0.35 n/a
1ama 3473 13892 17538 94.4 15.9 n/a 2.3 0.36 n/a
1tas³ 6096 24384 17636 87.9 16.0 (30.0) 2.8 n/a (0.53)
1tat³ 6098 24392 18194 97.0 15.0 (30.0) 3.0 n/a (0.54)

1pig 4257 17028 44944 93.7 17.8 21.0 2.2 0.16 0.15
1pif 4184 16736 40433 94.7 17.1 20.8 2.3 0.17 0.16
1ose 4377 17508 37212 90.0 17.6 22.2 2.3 0.20 0.18
1jfh 4363 17453 33421 99.4 16.0 18.5 2.03 0.17 0.14
1ppi 4358 17432 25018 95.0 15.3 n/a 2.2 0.26 n/a
1dhk§ 5840 23360 66557 96.7 18.3 22.0 1.85 0.13 0.12
1bvn 4606 18424 17259 73.7 16.6 26.0 2.5 n/a 0.372

1eq2 25435 101740 242238 93.3 21.2 26.2 2.0 0.19 0.17

² As the model was re®ned with anisotropic displacement parameters for all non-H
atoms, npar was set to 9� Ni and cpl. was taken from the publication. ³ All values were
taken from the publication (Hohenester & Jansonius, 1994). § Value for cpl. was taken
from the publication.
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Using standard parameters (nhyp = 20, wp = 20.0, rmut = 5.0%)

and lower and upper tolerance levels of "l = 5.0 and "h = 10.0,

respectively, the GA identi®ed (using 5.0 s of CPU time), in

very good agreement with the manual interpretation of the

EDD matrix, 103 of the 127 atoms as conformationally

invariant (Fig. 1a). All these residues (2±27, 34±101, 105±113)

are located in the N-terminal domain of the protein

(Fig. 2).

When the limits for display and the automatic search were

reduced to "l = 2.0 and "h = 5.0, many more matrix elements

showed a signal and manual interpretation became substan-

tially more complicated if not impossible (Fig. 1b). Running

the automatic procedure using the smaller tolerance levels

and standard parameters otherwise (nhyp = 20, wp = 20.0,

rmut = 5.0%), the rigid part was found to be substantially

smaller. Residues 3±13, 48±52 and 86±95, i.e. only 26 residues,

exclusively located in a small region of the central �-sheet,

were now identi®ed. This subset of residues is not completely

continous in sequence but is nevertheless continous in three-

dimensional space (Fig. 2). Here it should be noted that apart

from the application of the constraints to atoms close in

primary sequence as described in x2.2.6, no information about

connectivity in three dimensions is used in the algorithm.

The C� atoms of these 26 residues are suf®cient to afford a

robust superposition using standard least-squares super-

position techniques, yielding mean r.m.s. deviations of 0.10

and 0.11 AÊ for superimposing molecule B and molecule C

onto molecule A, respectively. The overall picture of a ¯oppy

C-terminus stays valid, while the superposition based on this

small subset reveals small but signi®cant conformational

differences in the at ®rst sight rigid N-terminal domain. This

observation relates to the fact that at a resolution of 1.3 AÊ , at

least for atoms with low B factors, changes in relative position

of the order of 0.1 AÊ are de®nitely signi®cant.

In this example, the differences in interatomic distances are

rather large for some atoms in the C-terminal region (up to

more than 10 AÊ corresponding to more than 100� of the

interatomic distance in some cases). In an early version of the

algorithm, inclusion of an atom from this region often caused

the evolutionary search to become unstable because well

performing hypotheses were ruined by inclusion of one

`wrong' atom during the phase of random mutation. This

Figure 1
Error-scaled difference distance matrices for molecules A and B of chorismate mutase. All changes in distances smaller than a threshold (5� and 2� for a
and b, respectively) are shown in grey; differences between this lower limit and an upper limit of 10� (5� for b) are shown using a colour gradient where
red stands for expansion and blue for contraction, light colours represent small changes and dark colours large changes; all differences larger than the
upper limit are shown as full blue and full red, respectively. The gradients used for colour coding are also shown separately at the bottom of the ®gure.
The bar underneath the matrix in the foreground shows the secondary structure as white (�-helices) and black (�-strands) rectangles. The background of
the secondary-structure scheme indicates parts of the protein that were identi®ed to be conformationally invariant (dark grey) using a tolerance "l of 5�
(a) or 2� (b), respectively. For clarity, the matrices underwent 2 � 2 binning (maintaining the element with the highest absolute value in the respective
binning area) before being displayed.



problem was overcome by limiting the penalty term (8) and by

only accepting mutations that improve the score of a

hypothesis.

3.2. Fab fragment

Antibodies consist of immunoglobulin domains connected

by hinge regions allowing variability in the orientation of the

domains with respect to each other. As, owing to this ¯ex-

ibility, the crystallization of intact antibodies is rather dif®cult,

many studies of antibodies are based on the crystal structure

of Fab fragments (Branden & Tooze, 1999). In the case of an

Fab fragment from human myeloma immunoglobulin studied

by Saul & Poljak (1992), orthorhombic crystals in space group

P212121 (unit-cell parameters a = 110.6, b = 127.4, c = 66.5 AÊ )

contain two Fab fragments in the asymmetric unit.

The DPI value based on the R value against all data was

calculated to be 0.15 AÊ (Table 1), resulting in estimates for the

coordinate errors for C� atoms ranging between 0.048 and

0.389 AÊ .

The error-scaled difference distance matrix for the

comparison of the two Fab fragments (Fig. 3a) clearly reveals

that the Fab fragment consists of four mostly rigid domains

that can move relative to one another: the matrix contains four

`empty' blocks along the diagonal corresponding to the vari-

able (N-terminal) and the constant (C-terminal) parts of both

the light (chain A) and the heavy (chain B) chain of the

antibody.

Using standard parameters (nhyp = 20, wp = 20.0, rmut = 5.0%)

and lower and upper tolerance levels of "l = 2.0 and "h = 5.0,

respectively, the GA identi®ed (using 2.0 s of CPU time to

analyse one matrix with 82 215 unique elements) residues B1±

B11, B14±B101 and B108±B122, i.e. most residues of the

variable domain of the heavy chain, as the largest conforma-

tionally invariant part.

Superposition of the two NCS-related conformers of the

heavy chain based on the 114 conformationally invariant C�

atoms resulted in a mean r.m.s. deviation of 0.213 AÊ , which is

of the order of the experimental error.

Fig. 3(b) clearly shows the difference in relative orientation

of the constant and the variable domain arising from localized

structural changes in the so-called elbow region. This move-

ment of the domains relative to one another has been

observed previously in many cases (e.g. Strong et al., 1991;

Kleywegt, 1996). In addition, there is a small but signi®cant

movement of residues B12 and B13 that is mediated by a

contact of the amide group of Gln13B to the moving part of

the elbow region. The other part of the variable half of the

heavy chain that is found to be ¯exible is the the CDR 3 region

of this chain. This region is known to be the most ¯exible of

the loops involved in antigen recognition (BraÈndeÂn & Tooze,

1999).

To fully rationalize the ¯exibility of this Fab fragment, the

algorithm used to identify the largest conformationally

invariant part should be applied iteratively to identify all rigid

domains. This will be the subject of future work.
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Figure 2
(a) Secondary structure of chorismate mutase. The colours correspond to
the ¯exibility of the different parts of the molecule: dark blue shows
regions that are conformationally invariant when a tolerance of "l = 2� is
used, light blue marks parts that are conformationally invariant at the 5�
level and ¯exible regions are shown in red. (b) Superposition of the three
crystallographically independent molecules of chorismate mutase using
the 26 C� atoms (indicated as a blue backbone trace) that were found to
be conformationally invariant at the 2� level.
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3.3. Mitochondrial aspartate aminotransferase

Mitochondrial aspartate aminotransferase from chicken is a

classic example of an enzyme where binding of a substrate

induces a transition from an open to a closed conformation.

Following a division suggested by McPhalen, Vincent, Picot

et al. (1992), the molecule is composed of a large (residues

48±325) and a small (residues 15±47 and 326±410) domain

(Fig. 5a).

In an initial comparison (McPhalen, Vincent & Jansonius,

1992) of an open unliganded (PDB code 7aat) and a closed

liganded form (PDB code 1ama) using the sieve ®tting

procedure (Lesk & Chothia, 1984), the conformationally

invariant part of the molecule was determined to contain

residues 4±12, 50±161, 167±195, 199±224 and 233±309. 2 y

later, Hohenester & Jansonius (1994) presented another

detailed conformational analysis of the enzyme with and

without substrate, but now based on the comparison of ®ve

crystal structures in four different crystal forms. This analysis

led to the conclusion that the enzyme exists in only two unique

conformations (an open one and a closed one) and the domain

structure found earlier was con®rmed. An overview of the ®ve

structures discussed by Hohenester & Jansonius (1994) is

given in Table 2.

The parameters relevant for the calculation of DPI values

for the ®ve structures are given in Table 1. Owing to the low

resolution for 1tas and 1tat, the number of parameters re®ned

is larger than the number of observables, precluding the use of

(5). As there are also no Rfree values available for these two

re®nements, (4) also cannot be used. To be able to include

these two models in the analysis despite the fact that no reli-

able indicators of the quality of the models were available,

coordinate uncertainties were calculated based on Rfree values

deliberately assumed to be 30.0%. The resulting values for

DPIf are rather high (0.53 and 0.54 AÊ for 1tas and 1tat,

respectively) re¯ecting the rather limited information content

of the two models.

The ®rst step of the analysis concerned the identi®cation of

models representing identical conformations. Towards this

objective, EDD matrices for C� atoms were calculated for all

possible pairs of models and the percentage of matrix

elements larger than a given tolerance was evaluated (Table 3).

Employing the criterion that two models are identical at a

given tolerance level "l if for more than 98% of the elements of

the respective EDD matrix the absolute value is smaller than

"l (see x2.3), the ®ve models could be divided into two groups

using a tolerance of "l = 2.0� (Table 3). One group comprises

the two models representing the open form, 7aat and 1tar and

Figure 3
(a) Error-scaled difference distance matrix for the two NCS-related models of the Fab fragment. Residue numbers A3±A208 and B1±B208 correspond to
the light and the heavy chain, respectively. Colour coding and rigid-body marking are as in Fig. 1. Red tickmarks and residue numbers correspond to
stretches of residues not present in one or both of the models. The matrix underwent 3 � 3 binning before being displayed. (b) Superposition of the two
conformers of the two heavy chains, chain B (blue and dark red) and chain D (blue and light red) of PDB entry 8fab, using the 114 conformationally
invariant atoms.



the other group contains the three models representing the

closed form, 1ama, 1tas and 1tat. It should be noted that the

absence of signi®cant differences between the different

models for the closed form partly re¯ects the relatively high

uncertainty assigned to the coordinates of 1tas and 1tat.

Taking the most precisely determined representative of

each of the two sets, it remained to compare 7aat and 1ama.

The error-scaled difference distance matrix (Fig. 4) clearly

shows the division of the protein into the two domains as

de®ned earlier. The automatic analysis of the 80 200 matrix

elements using a tolerance of "l = 2.0� took 6.0 s of CPU time

and ¯agged 281 atoms (residues 4±12, 47±226 and 232±329) as

conformationally invariant. This set of conformationally

invariant atoms is in very good agreement with the set de®ned

by McPhalen and coworkers (4±12, 50±161, 167±195, 199±224

and 233±309). Apart from small variations at the boundaries

of the ¯agged regions, only two regions, 162±166 and 196±199,

located at the interface between the large and the small

domain are categorized differently in the present analysis. For

residues 162±166, the B values of all C� atoms are above the

average B value for C� atoms. As a consequence, the structural

differences in this region, although being substantial on an

absolute scale, are not considered to be signi®cant in the

present analysis. If a second analysis is run employing a lower

tolerance level of "l = 1.0�, residues 196±199 (and also resi-

dues 162±166) are in fact excluded from the conformationally

invariant part, indicating that the conformational changes

observed are on the border of being signi®cant.
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Figure 5
(a) Secondary structure of aspartate aminotransferase. Parts identi®ed as
conformationally invariant are shown in blue, ¯exible regions in red, the
cofactor PLP and the lysine side chain it is bound to are shown in grey to
indicate the the active site. (b) Superposition of 7aat (blue and dark red)
and 1ama (blue and light red) using the 281 conformationally invariant
atoms. This view is related to the view in (a) by a rotation of 90� about the
vertical axis.

Figure 4
Error-scaled difference distance matrix for the two most precise models
of aspartate aminotransferase in the open and in the closed conformation
(7aat and 1ama, respectively). Colour coding, secondary-structure
representation and rigid-body marking are as in Fig. 1. Red tickmarks
and residue numbers correspond to stretches of residues not present in
one or both of the models. The matrix underwent 4 � 4 binning before
being displayed.
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The largest discrepancy in categorization is found for resi-

dues 309±329, corresponding to the N-terminal half of the long

�-helix (helix 13, Fig. 5) connecting the two domains.

McPhalen and coworkers observed that `the ®rst part of helix

13 rotates by 4� and shifts by 0.4 AÊ ' (McPhalen, Vincent, Picot

et al., 1992) upon domain closure and therefore did not include

this region in the rigid part of the molecule. Furthermore, they

found that in the C-terminal part the helix moves around a

kink angle whose centre is located in the region of residue

328±330. The movement of the ®rst part of the helix is not

detected as being signi®cant in the present analysis. The kink

region is clearly indicated by the last residue of the confor-

mationally invariant region being identi®ed as residue 329. In

fact, in a recent analysis of the different X-ray conformers of

aspartate aminotransferase using the DYNDOM approach,

the N-terminal half of helix 13 is also included in the large

rigid domain and the domain boundary is located at residue

328 (Hayward, 1999). The DYNDOM analysis also includes

residues 162±166 and 196±199 in the rigid part of the molecule.

3.4. Pig pancreatic a-amylase

Pig pancreatic �-amylase is a sugar-cleaving enzyme

consisting of 496 residues with a total molecular weight

55.3 kDa. As of January 2001, the PDB contained seven

entries for porcine pancreatic amylase (E.C. 3.2.1.1, SwissProt

P00690) in four different crystal forms. There is one structure

of the native protein alone (1pif) and six structures with

different ligands (Table 4). The molecule is composed of a

large domain (residues 1±403)

consisting of an eightfold

�/�-barrel and a small domain

(residues 404±496) folding into a

compact Greek key �-barrel

(Fig. 7).

The coordinate errors were

estimated using (4) and (5)

depending on whether or not free

R values were available. The coor-

dinate precision was found to be

between 0.12 and 0.20 AÊ for the

majority of the structures (Table 1).

Exceptions are 1ppi and 1bvn, for

which higher mean coordinate

uncertainties of 0.26 and 0.37 AÊ are

observed. In the case of 1ppi, the

relatively low solvent content (46%, Table 4) results in a worse

ratio of observables to parameters than for structures re®ned

to a comparable resolution but with a higher solvent content,

for example, 1pig, 1pif and 1ose with a solvent content of 72%

(Table 4). For 1bvn, the low completeness of the X-ray data

(probably owing to experimental dif®culties connected with

the relatively long c axis of the crystallographic unit cell) has a

deleterious effect on the coordinate precision.

Table 2
Crystallographic data for AATase structures discussed in Hohenester & Jansonius (1994).

7aat and 1tar corrspond to the two open structures and 1ama, 1tas and 1tat to the three closed structures (OP1,
OP2 and CL1, CL2, CL3, respectively, in Hohenester & Jansonius, 1994). 7aat supersedes the structure
determined previously under the same conditions but at lower resolution by Ford et al. (1980). PLP stands for
pyridoxal-50-phosphate.

Unit-cell parameters

PDB
code

Space
group a, b, c (AÊ ) �, �,  (�) Ligand and reference

7aat P1 55.6, 58.7, 75.9 85.2, 109.2, 115.6 None (McPhalen, Vincent, Picot et al., 1992)
1tar P1 57.4, 59.4, 65.50 83.1, 104.8, 83.3 None (Hohenester & Jansonius, 1994)
1ama C2221 69.7, 91.4, 128.5 90.0, 90.0, 90.0 �-Methylaspartate (McPhalen, Vincent,

Picot et al., 1992)
1tas P21 57.4, 52.4, 136.9 90.0, 101.5, 90.0 �-Methylaspartate (Hohenester &

Jansonius, 1994)
1tat P212121 69.5, 89.6, 144.7 90.0, 90.0, 90.0 Maleate (Hohenester & Jansonius, 1994)

Table 3
Percentage of error-scaled difference distance matrix elements smaller
than 2� for all pairwise comparisons of 7aat, 1tar, 1ama, 1tas and 1tat.

Cases for which the percentage is larger than 98.0 are in bold.

7aat 1tar 1ama 1tas 1tat

7aat 100.0 73.3 76.3 82.0
1tar 81.9 84.5 86.8
1ama 100.0 100.0
1tas 100.0
1tat

Figure 6
Matrix showing the highest absolute values found in any of the six
matrices corresponding to all pairwise comparisons between the four
models 1bvn, 1dhk, 1jfh and 1pig. Colour coding, secondary structure
representation and rigid-body marking are as in Fig. 1.



A ®rst round of EDD-matrix analysis including all seven

models revealed that four structures (1ppi, 1ose, 1pif and 1pig)

ful®l the criterion for being identical (x2.3) for all their pair-

wise comparisons at the 2.0� level (Table 5). Interestingly, this

group contains both structures with the largest DPI values: for

these two structures the absolute differences in conformation

would need to be rather large to be signi®cant. Of this group

of identical structures, only one representative, namely the

structure with the lowest coordinate uncertainty, 1pig, was

retained for further analysis.

1pig and the remaining three models, 1bvn, 1dhk and 1jfh

were then subjected to rigid-body analysis with standard

parameters (nhyp = 20, wp = 20.0, "l = 2.0, "h = 5.0, rmut = 5.0%).

The evolutionary search against six EDD matrices containing

a total of 855 855 elements converged to homogeneity after

®ve generations (corresponding to 9.4 s CPU time) marking

413 out of 495 residues as conformationally invariant. Fig. 6

shows an error-scaled difference distance matrix summarizing

the six difference distance matrices calculated for the four

structures. The atom set suggested as conformationally

invariant by the genetic algorithm is clearly consistent with

this matrix. Furthermore, a projection of the residues marked

as rigid and ¯exible onto a schematic view of the protein

produces a very convincing picture (Fig. 7). All the ¯exible

stretches of amino acids, with the exception of residues

476±477 and the very N-terminal residue 1, are located on the

substrate-binding side of the protein, indicating that the major

part of the molecule forms a rigid scaffold to which loops

involved in ligand binding and catalysis are attached. The

small non-rigid region in the Greek key domain (476±477)

re¯ects a crystallization artefact: in the 1pig model, a sugar

molecule wedged in between two symmetry-related protein

molecules causes a distortion of the polypeptide backbone in

this region.

3.5. Comparions of ten NCS-related copies of epimerase

ADP-l-glycero-d-mannoheptose 6-epimerase (EC 5.1.3.20;

MW = 34.9 kDa; 310 amino-acid residues) is an enzyme

required for the biosynthesis of lipopolysaccharides in many

pathogenic bacteria. The structure

of the enzyme in complex with

NADP and ADP-glucose has been

determined to a resolution of 2.0 AÊ

using monoclinic crystals (space

group P21; unit-cell parameters

a = 99.5, b = 109.8, c = 181.5 AÊ ,

� = 91.0�) by Deacon et al. (2000).

Architecturally, the protein mole-

cule can be subdivided into an N-

terminal and a C-terminal domain

(residues 1±167, 214±236 and 280±

292, and residues 168±213, 237±279

and 293±310, respectively; Fig. 8a).

The N-terminal domain binds

NADP and consists of a modi®ed

Rossmann fold with a central

seven-stranded �-sheet ¯anked on either side by a total of

seven helices. The C-terminal domain consists of an arrange-

ment of two small �-sheets and three �-helices. The asym-

metric unit contains two pentamers and superposition of the

ten crystallographically independent molecules revealed that

the individual molecules adopt slightly different conforma-

tions depending on the crystal packing. As parts of the

sequence could not be built for all of the model, the following

analysis is limited to the 271 C� atoms present in all ten

molecules of the model.

An initial inspection of all pairwise comparisons to establish

which conformers are identical according to the criterion

de®ned in x2.3 did not reveal any consistent sets of identical

molecules.

Running the GA with standard parameters (nhyp = 20,

wp = 20.0, "l = 2.0, "h = 5.0, rmut = 5.0%), convergence to

homogeneity was reached after six generations (20.9 s CPU

time) and 205 of 271 C� atoms were marked as conforma-

tionally invariant. The residues selected as rigid (1±21, 24±79,

86±120, 125±177, 210±238 and 278±288) ®t well with the

domain structure of the protein described above. One half of

the protein provides a rigid scaffold in which the cofactor is

®rmly anchored in a way such that the nicotinamide moiety

points toward the active site. The other half of the molecule

consists of ¯exible parts that are involved in substrate binding

(Fig. 8). The rigid domain consists mostly of residues from the

N-terminal half of the sequence. For residues 1±177, ¯exible

parts are only found for residues 22 and 23 (a glycine and a

lysine in a surface loop region) and 80±85 and 121±124 (both

loops protruding from the C-terminal towards the substrate

binding site). Most of the C-terminal half of the polypeptide

chain is ¯exible. However, the regions of the C-terminal half

for which the chain returns into the N-terminal domain are

rigid again: these rigid parts include residues 210±238 (adding

another helix and the seventh �-sheet to the modi®ed Ross-

mann fold) and residues 278±288 comprising a short helix

interacting with the central �-sheet).

Employing the 205 conformationally invariant C� atoms for

least-squares superposition of all molecules onto molecule A

gave mean r.m.s. deviations between 0.11 and 0.18 AÊ with a
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Table 4
Crystallographic data for structures in the PDB containing pig pancreatic �-amylase (as of 31 January
2001).

All data were taken from the respective PDB ®les. SC, solvent content.

Unit-cell parameters

PDB
code

Space
group a, b, c (AÊ ) �, �,  (�)

SC
(%)

dmin

(AÊ ) Ligand and reference

1pig P212121 70.5, 114.8, 118.7 90.0, 90.0, 90.0 72 2.2 Oligosaccharide V-1532
(Machius et al., 1996)

1pif P212121 70.7, 114.9, 118.9 90.0, 90.0, 90.0 72 2.3 None (Machius et al., 1996)
1ose P212121 70.6, 114.7, 118.5 90.0, 90.0, 90.0 72 2.3 Acarbose (Gilles et al., 1996)
1jfh P212121 56.3, 87.8, 103.4 90.0, 90.0, 90.0 45 2.03 Substrate analogue (Qian et al., 1997)
1ppi P212121 56.3, 87.8, 103.4 90.0, 90.0, 90.0 46 2.2 Acarbose (Qian et al., 1995)
1dhk C2 151.6, 79.4, 68.0 90.0, 91.5, 90.0 56 1.85 Bean lectin-like inhibitor

(Bompard-Gilles et al., 1996)
1bvn P6522 77.7, 77.7, 359.5 90.0, 90.0, 120.0 51 2.5 Tendamistat (Wiegand et al., 1995)
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mean value of 0.14� 0.02 AÊ . These deviations are comparable

to the coordinate error estimated via the DPI method,

DPIf = 0.17 AÊ (Table 1), and are signi®cantly smaller than the

mean r.m.s. deviation of 0.39� 0.07 AÊ that was obtained when

all 271 C� atoms present in all molecules were superimposed.

A graphical reprensentation of the superposition of the

ensemble of structures highlights the rigidity of the C-terminal

domain and the ¯exibility of the N-terminal domain (Fig. 8b).

The superposition also shows that the ensemble of conformers

can be divided into two groups, one corresponding to a more

open and the other to a more closed form (see also Deacon et

al., 2000).

4. Conclusions and future perspectives

A genetic algorithm for the identi®cation of the part of a

protein molecule that is conformationally invariant with

respect to a set of N conformers has been designed, imple-

mented and tested on ®ve examples using a standard set of

parameters. As a result of the acceleration provided by the

application-speci®c genetic operators (x2.2.2), the algorithm

converges rapidly and the results are in good agreement with

elaborate manual analysis. Genetic algorithms are particularly

suitable for this problem because hypotheses can be expressed

in sequential binary form and partially correct solutions begin

to have a positive in¯uence on the ®tness at an early stage.

This tool being available, the following general procedure

for comparing a set of models of a molecule can be suggested:

(i) identi®cation and removal of redundant conformers, (ii)

identi®cation of a set of conformationally invariant atoms with

respect to the non-redundant set of conformers, (iii) least-

squares superposition of all models using the conformationally

invariant subset only and (iv) graphical inspection of the

results.

The ®rst step can be performed by calculating error-scaled

difference distance matrices for all pairs of conformers in the

initial set. If groups of conformers turn out to be not signi®-

cantly different, as indicated by a small number of non-zero

elements in the corresponding error-scaled difference distance

matrix (see x2.3), only the most precise conformer of each set

of identical models is retained for the subsequent analysis.

This will speed up the analysis and more importantly will

avoid bias in the selection of the conformationally invariant

atoms caused by multiple inclusion of identical models. In the

future, this clustering analysis could be automated employing

clustering algorithms such as that described by Kelley et al.

(1996).

The central step of the procedure, the identi®cation of the

rigid part of the molecule by simultaneous analysis of a

potentially large number of conformers, is facilitated by the

genetic algorithm presented. The algorithm can analyse a

large number of complex difference distance matrices very

rapidly using only moderate computing resources. Moreover,

such an automated procedure is more objective than an

iterative manual procedure.

A standard set of parameters has been shown to work under

rather different circumstances. Nevertheless, in the case that

no satisfactory result is obtained with the standard parameter

set, the parameters can be changed by the user of the program.

One problematic scenario is the comparison of models

suffering from serious systematic errors. For such cases,

difference distance matrices will be very noisy even after the

application of error-scaling and it may be necessary to choose

rather high tolerance levels "l to obtain any reasonable results.

On the other hand, if well determined crystal structures are

used, reduction of "l may be bene®cial in order to impose an

extremely strict criterion for conformational invariance. Such

lower tolerance levels will of course yield smaller sets of atoms

to be used for superposition. Theoretically at least, this is not a

problem, as in principle three non-collinear atoms are suf®-

cient for a least-squares superposition of molecules in three

dimensions. However, in reality a larger number of atoms is

advantageous in order to perform a statistically robust

superposition. The parameters governing the evolutionary

search (number of hypotheses, creation of the starting popu-

lation, mutation rate etc.) normally do not have to be changed.

The least-squares superposition itself can be performed

using classical least-squares methods, such as the one

implemented in LSQKAB (Kabsch, 1976). Such standard

least-squares methods, however, do not weight the residual

coordinate difference with respect to the coordinate precision

Table 5
Percentage of EDD elements smaller than 2� for all pairwise
comparisons of seven pig pancreatic �-amylase structures. Cases for
which the percentage is larger than 98.0 are shown in bold.

1bvn 1dhk 1jfh 1ppi 1ose 1pif 1pig

1bvn 95.2 96.3 97.7 97.5 98.8 96.5
1dhk 88.9 93.8 90.9 92.0 89.9
1jfh 99.5 98.5 96.4 97.8
1ppi 99.9 98.6 99.9
1ose 98.9 100.0
1pif 98.1
1pig

Figure 7
Secondary structure of pig pancreatic �-amylase. Parts identi®ed as
conformationally invariant (residues 2±103, 106±117, 123±136, 168±199,
202±236, 241±262, 271±299, 313±345, 358±431, 434±475 and 478±495) are
shown in blue; ¯exible regions are shown in red.



of the atoms involved, allowing the superposition to be too

strongly in¯uenced by large coordinate differences between

atoms of high coordinate uncertainty. To alleviate this

problem, we are working on the implementation of an

uncertainty-weighted least-squares superposition algorithm.

Meanwhile, one possibility is to rerun the present algorithm

with a very strict tolerance criterion: this will automatically

identify a subset of the set of the conformationally invariant

atoms that is rigid and has a low coordinate error.

Finally, displaying the results on a computer graphics system

in a suitable format will in many cases allow intuitive inter-

pretation of the results.

The entire procedure crucially depends on accurate error-

estimates and, of course, on the models employed being

essentially correct and the associated statistics being reliable.

Although Cruickshank's DPI gives a good ®rst-order

approximation, it would be desirable to have more accurate

estimators of coordinate precision. A more complex func-

tional form with empirically optimized parameters could be an

improvement (Cruickshank, 1999). Ideally, coordinate uncer-

tainties would be calculated directly from the experimental

data, an obvious choice being an estimate based on real-space

correlation coef®cients (Jones et al., 1991). Technically, such

data-based estimates require the diffraction data to be avail-

able at the time of the calculation, which unfortunately is not

always the case, as diffraction data are not always deposited

together with the model coordinates (Jiang et al., 1999).

So far, the method has only been applied to C� atoms as

`representatives' of overall protein conformation. The algo-

rithm is equally well applicable to, for example, P atoms in

RNA structures or to the study of the changes in relative

positions of atoms in an active site when different substrates

or inhibitors are bound.

Furthermore, iterative application of the method would

allow the delineation of not only the largest but also smaller

domains in order to characterize multi-domain structures both

in terms of the identi®cation of the domains and the

description of their relative motions (Verbitsky et al., 1999;

Gerstein & Krebs, 1998; Berendsen & Hayward, 1998). This

will be the subject of future work.

Currently, the method is limited to the analysis of different

conformers of the same molecule. A generalization of the

algorithm for cases where closely homologeous structures are

compared and a robust mapping of corresponding atoms in

three dimensions can be achieved using existing methods such

as DALI (Holm & Sander, 1993), which is also based on

difference distance matrices, is a mostly technical problem [for

recent reviews concerning structure alignment see, for

example, Lemmen & Lengauer (2000) and Eidhammer et al.

(2000)]. Such a superposition of homologeous models taking

the different level of precision into account would not only be

useful from a structure-analysis point of view but could also be

used to construct hybrid models for use in dif®cult molecular-

replacement cases as suggested by Read (2001).

I am grateful to George Sheldrick for many discussions and

encouragement, and to Karl Edman for being a patient and

creative tester of early versions of the computer program

implementing the ideas presented. The computer program

ESCET is available as a beta-test version from the author.
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Figure 8
(a) Secondary structure of epimerase. Parts identi®ed as conformationally
invariant are shown in blue and ¯exible regions in red. The cofactor
NADP and the substrate analogue ATP-glucose are shown in ball-and-
stick representation in grey and yellow, respectively. (b) Backbone traces
of ten molecules superimposed using the conformationally invariant part
(shown in blue). This view is related to the view in (a) by a rotation of
about 120� about the vertical axis.
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